Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 8149-8163, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38442005

RESUMO

Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.


Assuntos
Capuzes de RNA , Vacinas , Animais , Camundongos , RNA Mensageiro/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Biossíntese de Proteínas , Metilação
2.
Mol Cell ; 75(3): 631-643.e8, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31279658

RESUMO

mRNAs are regulated by nucleotide modifications that influence their cellular fate. Two of the most abundant modified nucleotides are N6-methyladenosine (m6A), found within mRNAs, and N6,2'-O-dimethyladenosine (m6Am), which is found at the first transcribed nucleotide. Distinguishing these modifications in mapping studies has been difficult. Here, we identify and biochemically characterize PCIF1, the methyltransferase that generates m6Am. We find that PCIF1 binds and is dependent on the m7G cap. By depleting PCIF1, we generated transcriptome-wide maps that distinguish m6Am and m6A. We find that m6A and m6Am misannotations arise from mRNA isoforms with alternative transcription start sites (TSSs). These isoforms contain m6Am that maps to "internal" sites, increasing the likelihood of misannotation. We find that depleting PCIF1 does not substantially affect mRNA translation but is associated with reduced stability of a subset of m6Am-annotated mRNAs. The discovery of PCIF1 and our accurate mapping technique will facilitate future studies to characterize m6Am's function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Transcriptoma/genética , Adenosina/genética , Humanos , Metilação , Metiltransferases/genética , Biossíntese de Proteínas/genética , Sítio de Iniciação de Transcrição
3.
Artigo em Inglês | MEDLINE | ID: mdl-30397098

RESUMO

The 5'-cap structure, characteristic for RNA polymerase II-transcribed RNAs, plays important roles in RNA metabolism. In humans, RNA cap formation includes post-transcriptional modification of the first transcribed nucleotide by RNA cap1 methyltransferase (CMTr1). Here, we report that CMTr1 activity is hindered towards RNA substrates with highly structured 5' termini. We found that CMTr1 binds ATP-dependent RNA DHX15 helicase and that this interaction, mediated by the G-patch domain of CMTr1, has an advantageous effect on CMTr1 activity towards highly structured RNA substrates. The effect of DHX15 helicase activity is consistent with the strength of the secondary structure that has to be removed for CMTr1 to access the 5'-terminal residues in a single-stranded conformation. This is, to our knowledge, the first demonstration of the involvement of DHX15 in post-transcriptional RNA modification, and the first example of a molecular process in which DHX15 directly affects the activity of another enzyme. Our findings suggest a new mechanism underlying the regulatory role of DHX15 in the RNA capping process. RNAs with highly structured 5' termini constitute a significant fraction of the human transcriptome. Hence, CMTr1-DHX15 cooperation is likely to be important for the metabolism of RNA polymerase II-transcribed RNAs.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Assuntos
Metiltransferases/metabolismo , RNA Helicases/metabolismo , Humanos , Metilação , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...